mysql-事务和锁

2021/02/09 mysql

前言:事务的四大特性、事务的状态、四种隔离级别、三大读写问题、两类丢失更新、锁

一、事务相关特性

1、事务的四大特性

事务包含四大特性,即原子性(Atomicity)一致性(Consistency)隔离性(Isolation)*和*持久性(Durability)(ACID)。

  • 原子性(Atomicity)原子性是指对数据库的一系列操作,要么全部成功,要么全部失败,不可能出现部分成功的情况。以转账场景为例,一个账户的余额减少,另一个账户的余额增加,这两个操作一定是同时成功或者同时失败的。
  • 一致性(Consistency)一致性是指数据库的完整性约束没有被破坏,在事务执行前后都是合法的数据状态。这里的一致可以表示数据库自身的约束没有被破坏,比如某些字段的唯一性约束、字段长度约束等等;还可以表示各种实际场景下的业务约束,比如上面转账操作,一个账户减少的金额和另一个账户增加的金额一定是一样的。
  • 隔离性(Isolation)隔离性指的是多个事务彼此之间是完全隔离、互不干扰的。隔离性的最终目的也是为了保证一致性。
  • 持久性(Durability)持久性是指只要事务提交成功,那么对数据库做的修改就被永久保存下来了,不可能因为任何原因再回到原来的状态

2、事务的状态

根据事务所处的不同阶段,事务大致可以分为以下5个状态:

  • 活动的(active) 当事务对应的数据库操作正在执行过程中,则该事务处于活动状态。
  • 部分提交的(partially committed) 当事务中的最后一个操作执行完成,但还未将变更刷新到磁盘时,则该事务处于部分提交状态。
  • 失败的(failed) 当事务处于活动或者部分提交状态时,由于某些错误导致事务无法继续执行,则事务处于失败状态。
  • 中止的(aborted) 当事务处于失败状态,且回滚操作执行完毕,数据恢复到事务执行之前的状态时,则该事务处于中止状态。
  • 提交的(committed) 当事务处于部分提交状态,并且将修改过的数据都同步到磁盘之后,此时该事务处于提交状态。

image

3、四种隔离级别

SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的。低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销。

  • Read Uncommitted(读取未提交内容)在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。本隔离级别很少用于实际应用,因为它的性能也不比其他级别好多少。读取未提交的数据,也被称之为脏读(Dirty Read)。

  • Read Committed(读取提交内容)这是大多数数据库系统的默认隔离级别(但不是MySQL默认的)。它满足了简单的隔离 定义:一个事务只能看见已经提交事务所做的改变。这种隔离级别 也支持所谓的不可重复读(Nonrepeatable Read),因为同一事务的其他实例在该实例处理其间可能会有新的commit,所以同一select可能返回不同结果。

  • Repeatable Read(可重读) 这是MySQL的默认事务隔离级别,它确保同一事务的多个实例在并发读取数据时,会看到同样的数据行。不过理论上,这会导致另一个棘手的问题:幻读 (Phantom Read)。简单的说,幻读指当用户读取某一范围的数据行时,另一个事务又在该范围内插入了新行,当用户再读取该范围的数据行时,会发现有新的“幻影” 行。InnoDB和Falcon存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency Control)机制解决了该问题。

  • Serializable(可串行化) 这是最高的隔离级别,它通过强制事务排序,使之不可能相互冲突,从而解决幻读问题。简言之,它是在每个读的数据行上加上共享锁。在这个级别,可能导致大量的超时现象和锁竞争

4、MySQL中的隔离级别及对应的问题

image.png

二、三大读写问题

脏读

image.png

  • 脏读:读到其他事务未提交的更改数据(update),并进行了操作(最严重)
  • 不可重复读:读到其他事务已提交的更改的数据(update) –>行锁
  • 幻读:读到其他事务插入(insert)的数据 –>表锁
  • 第一类丢失更新:A撤销事务时,覆盖了B事务提交数据
  • 第二类丢失更新:A事务覆盖B事务提交的数据

不可重复读

image.png

image.png

幻读

image.png

image.png

三、两类丢失更新

第一类丢失更新

image.png

第二类丢失更新

image.png

四、锁

事务并发访问同一数据资源的情况主要就分为读-读写-写读-写三种。

  1. 读-读即并发事务同时访问同一行数据记录。由于两个事务都进行只读操作,不会对记录造成任何影响,因此并发读完全允许。
  2. 写-写即并发事务同时修改同一行数据记录。这种情况下可能导致脏写问题,这是任何情况下都不允许发生的,因此只能通过加锁实现,也就是当一个事务需要对某行记录进行修改时,首先会先给这条记录加锁,如果加锁成功则继续执行,否则就排队等待,事务执行完成或回滚会自动释放锁。
  3. 读-写即一个事务进行读取操作,另一个进行写入操作。这种情况下可能会产生脏读不可重复读幻读。最好的方案是读操作利用多版本并发控制(MVCC),写操作进行加锁

1、锁的粒度

按锁作用的数据范围进行分类的话,锁可以分为行级锁表级锁

  • 行级锁:作用在数据行上,锁的粒度比较小。
  • 表级锁:作用在整张数据表上,锁的粒度比较大。

2、锁的分类

为了实现读-读之间不受影响,并且写-写读-写之间能够相互阻塞,Mysql使用了读写锁的思路进行实现,具体来说就是分为了共享锁排它锁

  • 共享锁(Shared Locks):简称S锁,在事务要读取一条记录时,需要先获取该记录的S锁S锁可以在同一时刻被多个事务同时持有。我们可以用select ...... lock in share mode;的方式手工加上一把S锁
  • 排他锁(Exclusive Locks):简称X锁,在事务要改动一条记录时,需要先获取该记录的X锁X锁在同一时刻最多只能被一个事务持有。X锁的加锁方式有两种,第一种是自动加锁,在对数据进行增删改的时候,都会默认加上一个X锁。还有一种是手工加锁,我们用一个FOR UPDATE给一行数据加上一个X锁

还需要注意的一点是,如果一个事务已经持有了某行记录的S锁,另一个事务是无法为这行记录加上X锁的,反之亦然。

除了共享锁(Shared Locks)排他锁(Exclusive Locks)Mysql还有意向锁(Intention Locks)。意向锁是由数据库自己维护的,一般来说,当我们给一行数据加上共享锁之前,数据库会自动在这张表上面加一个意向共享锁(IS锁);当我们给一行数据加上排他锁之前,数据库会自动在这张表上面加一个意向排他锁(IX锁)意向锁可以认为是S锁X锁在数据表上的标识,通过意向锁可以快速判断表中是否有记录被上锁,从而避免通过遍历的方式来查看表中有没有记录被上锁,提升加锁效率。例如,我们要加表级别的X锁,这时候数据表里面如果存在行级别的X锁或者S锁的,加锁就会失败,此时直接根据意向锁就能知道这张表是否有行级别的X锁或者S锁

3、InnoDB中的表级锁

InnoDB中的表级锁主要包括表级别的意向共享锁(IS锁)意向排他锁(IX锁)以及自增锁(AUTO-INC锁)。其中IS锁IX锁在前面已经介绍过了,这里不再赘述,我们接下来重点了解一下AUTO-INC锁

大家都知道,如果我们给某列字段加了AUTO_INCREMENT自增属性,插入的时候不需要为该字段指定值,系统会自动保证递增。系统实现这种自动给AUTO_INCREMENT修饰的列递增赋值的原理主要是两个:

  • AUTO-INC锁:在执行插入语句的时先加上表级别的AUTO-INC锁,插入执行完成后立即释放锁。如果我们的插入语句在执行前无法确定具体要插入多少条记录,比如INSERT ... SELECT这种插入语句,一般采用AUTO-INC锁的方式
  • 轻量级锁:在插入语句生成AUTO_INCREMENT值时先才获取这个轻量级锁,然后在AUTO_INCREMENT值生成之后就释放轻量级锁如果我们的插入语句在执行前就可以确定具体要插入多少条记录,那么一般采用轻量级锁的方式对AUTO_INCREMENT修饰的列进行赋值。这种方式可以避免锁定表,可以提升插入性能。

mysql默认根据实际场景自动选择加锁方式,当然也可以通过innodb_autoinc_lock_mode强制指定只使用其中一种

4、InnoDB中的行级锁

前面说过,通过MVCC可以解决脏读不可重复读幻读这些读一致性问题,但实际上这只是解决了普通select语句的数据读取问题。事务利用MVCC进行的读取操作称之为快照读,所有普通的SELECT语句在READ COMMITTEDREPEATABLE READ隔离级别下都算是快照读。除了快照读之外,还有一种是锁定读,即在读取的时候给记录加锁,在锁定读的情况下依然要解决脏读不可重复读幻读的问题。由于都是在记录上加锁,这些锁都属于行级锁

InnoDB的行锁,是通过锁住索引来实现的,如果加锁查询的时候没有使用过索引,会将整个聚簇索引都锁住,相当于锁表了。根据锁定范围的不同,行锁可以使用记录锁(Record Locks)间隙锁(Gap Locks)临键锁(Next-Key Locks)的方式实现。假设现在有一张表t,主键是id。我们插入了4行数据,主键值分别是 1、4、7、10。接下来我们就以聚簇索引为例,具体介绍三种形式的行锁。

  • 记录锁(Record Locks) 所谓记录,就是指聚簇索引中真实存放的数据,比如上面的1、4、7、10都是记录。image

显然,记录锁就是直接锁定某行记录。当我们使用唯一性的索引(包括唯一索引和聚簇索引)进行等值查询且精准匹配到一条记录时,此时就会直接将这条记录锁定。例如select * from t where id =4 for update;就会将id=4的记录锁定

  • 间隙锁(Gap Locks) 间隙指的是两个记录之间逻辑上尚未填入数据的部分,比如上述的(1,4)、(4,7)等。image

同理,间隙锁就是锁定某些间隙区间的。当我们使用用等值查询或者范围查询,并且没有命中任何一个record,此时就会将对应的间隙区间锁定。例如select * from t where id =3 for update;或者select * from t where id > 1 and id < 4 for update;就会将(1,4)区间锁定

  • 临键锁(Next-Key Locks) 临键指的是间隙加上它右边的记录组成的左开右闭区间。比如上述的(1,4]、(4,7]等。image

临键锁就是记录锁(Record Locks)和间隙锁(Gap Locks)的结合,即除了锁住记录本身,还要再锁住索引之间的间隙。当我们使用范围查询,并且命中了部分record记录,此时锁住的就是临键区间。注意,临键锁锁住的区间会包含最后一个record的右边的临键区间。例如select * from t where id > 5 and id <= 7 for update;会锁住(4,7]、(7,+∞)。mysql默认行锁类型就是临键锁(Next-Key Locks)。当使用唯一性索引,等值查询匹配到一条记录的时候,临键锁(Next-Key Locks)会退化成记录锁;没有匹配到任何记录的时候,退化成间隙锁。

间隙锁(Gap Locks)临键锁(Next-Key Locks)都是用来解决幻读问题的,在已提交读(READ COMMITTED)隔离级别下,间隙锁(Gap Locks)临键锁(Next-Key Locks)都会失效!

作者:伍陆七

链接:https://juejin.cn/post/6855129007336521741

来源:掘金

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


Search

    公众号:豆仔gogo

    豆仔gogo

    Post Directory